Effects of MnO-Doping on the Structure of Sodium Metaphosphate Glasses

N. Zotov, H. Schlenz, B. Brendebach^a, H. Modrow^a, J. Hormes^{a,b}, F. Reinauer^c, R. Glaum^c, A. Kirfel, and C. Paulmann^d

Mineralogisch-Petrologisches Institut, Universität Bonn,

Poppelsdorfer Schloss, D-53115 Bonn, Germany

^a Physikalisches Institut, Universität Bonn, D-53115 Bonn, Germany

b Center for Advanced Microstructures and Devices, 70806 Baton Rouge, LA, U.S.A.

^c Institut für Anorganische Chemie, Universität Bonn, D-53121 Bonn, Germany ^d Mineralogisch-Petrologisches Institut, Universität Hamburg, D-20146 Hamburg, Germany

Reprint requests to Dr. N. Z.; Email nzotov@uni-bonn.de; Fax: +49-228-732770

Z. Naturforsch. **58a**, 419 – 428 (2003); received March 19, 2003

A combined structural study on ternary phosphate glasses $(MnO)_x(NaPO_3)_{1-x}$, x=0.0, 0.024, 0.048, 0.167, is performed using X-ray diffraction, EXAFS and Raman spectroscopy. The mean Mn-O nearest-neighbour distance and the Mn-O coordination number in the glass with 16.7 mol% MnO are 2.15(2) Å and 5.7 ± 0.4 , respectively. Depolymerization of the metaphosphate chains in the NaPO₃ glass structure is observed with increasing MnO content by Raman scattering. This leads to a strong decrease of the average chain length and a small decreasing of the average P-O-P bridging angle with increasing MnO content.

Key words: Phosphate Glasses; Transition Metals; X-ray Diffraction; Raman Spectroscopy; EXAFS.